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Research areas and objectives

• Dynamic ALE-AMR for hydrodynamics and 
material modeling: a numerical method  
combining an ALE formulation with AMR both in 
space and time – AMR meshes are dynamically 
generated during the simulation.

• Why ? Efficiency, accuracy, and possibility to 
solve problems that can not be solved by a 
single static mesh because of  limits of our 
current computing resources or current 
methods.
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Mathematical formulation for 
hydrodynamics and material modeling
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Mathematical formulation for elastic 
and plastic flow and material model
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Johnson-Cook  damage model
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ALE-AMR: Numerical  algorithm
ALE: 

Finite volume method with a predictor-corrector scheme for 
staggered variables on moving mesh

• Lagrange motion (Wilkins, Tipton, et al)
• Mesh relaxation (Winslow, Crowley, Jun, et al)
• Solution Remap (Colella, Van Leer, et al)
• Material modeling (Becker)
AMR:
• Adaptive gridding methods 
• Dynamically, locally refined Cartesian meshes (Berger, Oliger, 

Colella, et al)
ALE-AMR:
• AMR on moving meshes for gas dynamics (Anderson, Pember, 

et al)
• AMR on moving meshes  for elastic-plastic flow and 

material modeling
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ALE-Lagrange

Overall algorithm of Lagrange step:  get t=n+1 from t=n :       
Predictor    

1. Compute the acceleration  by using  the momentum    
equations :  an=f(xn,pn,sn,qn,h)/m

2. Integrate the velocity : up=un+dt*an
3. Integrate the node positions: xp= xn+0.5*dt*(un+up)            
4. Compute the strain rates : r=f(un,up,xn,xp)
5. Compute the volume and densities: dp=dnVn/Vp
6. Compute the energies: ep=f(pn,qn,sn,r,h,Vp,Vn)
7. Compute the stresses: sp=f(sn,Vn,Vp,r)
8. Compute the pressure: pp=f(dp,ep)
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ALE-Lagrange

Corrector     
1. Compute the acceleration using the momentum 

equations: anp1=f(xp,pp,sp,qn,h)/m 
2. Integrate the velocity: unp1=un+0.5*dt(an+anp1)
3. Integrate the node positions: 

xnp1=xn+0.5*dt*(un+unp1)                            
4. Compute the strain rates:  r=f(un,unp1,xn,xnp1)
5. Compute the volume Vnp1 and densities: 

dnp1=dnVn/Vnp1
6. Compute the energies: 

enp1=f(pn,pnp1,qn,sp,r,h,Vn,Vnp1)
7. Compute the stresses:snp1=f(sn,Vn,Vnp1,r)
8. Compute the pressure:pnp1=f(dnp1,enp1)



9 Of 34P. Wang

Dynamic AMR

• Berger-Oliger-
Colella AMR

• Dynamic 
• Geometrically 

flexible
• Efficiency
• Complexity of 

data structure
• Data 

management j

i

patch

levels

hierarchy
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AMR hierarchy integration

• Solutions advance 
to a level

• Coarse grid 
advances

• Multiple fine grid 
advances

• Solution 
synchronization 
between levels

t0

t1

t2

t_i 
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ALE-AMR: technical approach

• Using  SAMRAI tool to manage the basic data 
structure for AMR and parallel computation.

• Focus on numerical methods and solution 
algorithms to design ALE-AMR.

• Interlevel transfer operators.
• Coarse-fine boundary conditions.
• AMR on a moving mesh. 
• Criteria of refinement and coarsening.
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ALE-AMR : technical approach

Interlevel operators design goals:

1. Constant field preservation.

2. 2nd order accuracy.

3. Monotonicity.

4. Local conservation.

5. Exact inversion of refinement by 
coarsening.

6. Positivity  preservation.
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ALE-AMR : technical approach
Interlevel transfer operators
• Second order interpolation from coarse grids  to 

fine grids

The  primitive variables and the basis are
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ALE-AMR : technical approach
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Local conservation :
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ALE-AMR: technical approach

• Coarsening operators
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ALE-AMR: technical approach
• Coarse-Fine Boundary Conditions
• Position of coarse-fine boundary nodes linearly 

interpolated in time and space
• No nonhex/nonquad  elements on a composite 

mesh
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Results and discussion (elastic flow)

• For perfect elastic flow, 
we have tested several 
vibration beams 
problems which can be 
readily checked by 
elasticity theory.

• Simulation of the 
vibration plates with 
two fixed ends.

• Vibration motion is 
expected from the 
simulation.
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Results and discussion-2D and 3D 
vibration plates (elastic flow) 
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Results and discussion-vibration plates

Frequency of 2D vibration plate is check by elasticity theory with different 
resolutions (a) 2x12, (b) 4x24, and (c) 8x48.

(a) (b) (c)
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Results and discussion 
(elastic-plastic flow)

• Elastic-Plastic flow 
problem set up

• Simulation of the 
impact of an 
extruded rectangular 
solid of metal 
material on a rigid 
wall

• Plastic deformation 
is expected from this 
motion V0
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Dynamic ALEAMR 2D in motion-
elastic-plastic flow)
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Dynamic ALEAMR 3D in motion 
(elastic-plastic flow)
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Dynamic ALEAMR 3D for failure and 
fragmentation predictions-problem 1

Problem 1:  Tantalum ring 
(34.37 mm inside diameter, 
35.89 mm outside diameter 
and 0.76 mm thick) with 
velocity applied at the inner 
boundary. 

Failure model: Johnson-
Cook failure model.

Mesh: 5x5x600

Velocity: on inner surface
v= 0.03 X t/12 {cm/ms} 
for t = 0-12 ms
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Dynamic ALEAMR 3D for failure and 
fragmentation predictions
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Material strength and failure models

3D ALE-AMR test case of Ta 
expanding ring 
Lagrangian hydrodynamics
Johnson-Cook model with Failure
Ring expands and thins
Red denotes material that has failed
Time of failure and number of 
fragments agree with  the 
experimental data (Niordson
1965,Olson 2002) and the numerical 
data ( Becker 2002)  from other 
codes.

t = 0 μs

t = 37 μs
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Dynamic ALEAMR 3D for failure and 
fragmentation predictions-problem 2

Problem 2: Tantalum 
thin plate (5.0 cm x 
20.0 cm x 0.2 cm) with 
velocity applied at the 
two ends.

Failure model: 
Johnson-Cook failure 
model.

Mesh: 11x51x2 with  
2-levels AMR mesh.

V0

V0
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Problem 2 : Numerical simulation results 
of the damage and failure fields
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Parallel performance

• Parallel performance: fixed global size 
problem: 16x64x16 with 3 levels AMR 
(about 300k total grid points, it ranges 
75000 to 300 grid points from 4 cpu to 
1024 cpus).

• System: MCR a Linux cluster: 1112 dual 
nodes with 2.4 GHz for each cpu.
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Parallel performance for the fixed 
global size problem
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Efficiency study of the ALE-AMR 
Algorithm

Impact problem 
at 25 µs 

Single 
mesh

AMR 
mesh

Differences

Total CPU time 
(s) on MCR with 
16 processors

39145 22155 41%

Maximum plastic 
strain

1.186 1.198 1%

Computational efficiency and accuracy comparisons between the 
results from a single mesh 36x180x36 and the one from a 3-level 
AMR mesh with an initial coarse mesh 4x20x4.
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Results from a single mesh and a 3-
level  AMR mesh at 25 µs

AMR mesh 
(gray)
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Conclusions 

• A new numerical method combining ALE  with 
AMR  is developed. 

• The ALE-AMR method has been applied to 
several problems in hydrodynamics and material 
modeling, and the method shows excellent 
computational efficiency.

• The method shows good scalability on a large 
number of processors. 

• The method shows the great potential to attack 
complex problems : multi-scale modeling which 
allows simulation over a large range of time or 
distance scales that are currently modeled by 
separate codes and methods.
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Work under investigation and 
future directions

• More material failure and fragmentation 
simulations with ALE-AMR.

• Apply our current work to complex 
problems.

• Multi-physics simulations (radiation, multi-
materials and others).

• Verification and validation with 
experiments.
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